
Reducing Test Program Costs Through ATML-based

Requirements Conversion and Code Generation

Lars Lindstrom

National Instruments

Austin, TX, USA

lars.lindstrom@ni.com

Ion Neag

Reston Software

Reston, VA, USA

ion.neag@restonsoftware.com

Abstract—Most military and aerospace organizations

maintain their test requirements as paper-like forms stored

electronically. When test programs need to be created or

modified, these documents are often manually referenced, which

can be an inefficient and error-prone process. Additionally,

because modifications to test program code are sometimes made

without updating the corresponding requirements,

implementation and documentation tend to diverge as projects

evolve, which has an adverse effect on the long-term

maintainability of Test Program Sets (TPSs).

In the past, the lack of an industry-standard data format for

test requirements has imposed limitations on the traceability

between test results and test specifications. Previous attempts at

automating the conversion of analog and mixed-signal test

requirements into test programs produced proprietary solutions

with limited adoption.

In this paper, we describe an innovative process in which

multiple software applications interact through a standard XML

format that conforms to IEEE Std 1671.1 Automatic Test

Markup Language (ATML) Test Description. The process uses

automated test data conversion and code generation to facilitate

the initial creation and long-term maintenance of test programs.

Keywords—ATML, IEEE Std 1671.1, TPS, Test Description,

Code Generation

I. INTRODUCTION

In many industries the test requirements for a product are
documented in digital documents that are created by product
development engineers. When it is time to develop the tests for
these units, test engineers convert the tests, limits, and expected
behaviors into functional test code. This conversion is often a
manual and error-prone process.

By leveraging the IEEE 1671.1 ATML Test Description
standard for creating Test Requirement Documents (TRDs), an
organization can reduce inefficiencies and ensure
interoperability within their organization and their industry.
Using this standardization, organizations can also take
advantage of commercial-off-the-shelf (COTS) software tools
that can import old TRDs, edit existing ones, and automatically
convert the TRDs into usable test code.

II. CURRENT PRACTICE

Many new TRDs are created using Microsoft Word, but old
TRDs are often available as electronic scans of the original
paper documents, like the one shown in Fig. 1.

Fig. 1 – Test Requirements Document Example

TRDs are typically created by product engineers. Test
engineers reference the TRDs manually when test programs are
created or modified. For example, the test requirements form
shown in Fig. 1 could be converted into the following
LabWindows™/CVI test code. Note that in this example, we
assume that instruments are controlled through a Hardware
Abstraction Layer (HAL) that automates switching and wraps
instrument commands and driver calls in higher-level
functions. Additionally, we assume that test sequencing is
implemented separately by using a test executive, such as NI
TestStand.

ERR_CHK(ConnectInstPort2Pin("DMM_HI","J1-1"));

ERR_CHK(ConnectInstPort2Pin("DMM_LO","J1-3"));

ERR_CHK(dblMeasVal = DMM_Measure());

ERR_CHK(DisconnectInstPort2Pin("DMM_HI","J1-1"));

ERR_CHK(DisconnectInstPort2Pin("DMM_LO","J1-3"));

if(dblMeasVal >= 45.2 && dblMeasVal <= 57.0)

*nOutcome = PASS;

else

*nOutcome = FAIL;

Fig. 2 further illustrates the current manual requirements
entry process.

Fig. 2 – Current Practice

The manual conversion of TRDs into test program code has
the following disadvantages:

1. Re-typing port names, limits, test numbers, and so on is
inefficient and prone to errors.

2. Because code modifications are often made without
updating the corresponding TRDs, implementation and
documentation tend to diverge, which has an adverse
effect on the long-term maintainability of TPSs.

3. The maintenance of TRDs in paper-oriented forms rather
than in an electronic data format imposes limitations on
the traceability between test results and test
specifications.

III. INTRODUCING ATML TEST DESCRIPTION

Recognizing the need for electronic data exchange formats
in the Automatic Test Systems (ATS) domain, the ATML
Working Group and the IEEE developed the ATML family of
standards [1]. These standards define electronic data formats
based on the XML language. One of the ATML components,
IEEE 1671.1 ATML Test Description (TD), defines a data
format to represent test requirements [2].

Fig. 3 shows the sections of a typical XML instance
document that complies with the ATML Test Description
standard. The blocks represent the main sections of an instance
document, and indentation represents the hierarchy.

Fig. 3 – Structure of ATML Test Description Documents

The example document includes the following top-level
sections:

 UUT Data—Contains general UUT attributes, such as
part number, revision and manufacturer.

 Interface—Describes the electrical interface of the UUT
with connectors, pins, and ports.

 Components and Faults—Describes the components of
the UUT and the failure modes.

 Detailed Test Information—Contains data relevant for
testing the UUT.

The Detailed Test Information section contains a number of
Actions, which can be of type Test or Session Action. Each
Action contains a Behavior section, which can contain a free-
form Description field, one or more Operation elements, or
XML data that conforms to the Signal & Test Definition
standard.

The Detailed Test Information section also contains one or
more Test Groups, which can be of type Sequence, Serial, and
so on. Each Test Group contains a number of Steps.

The arrows in Fig. 3 represent references between sections.
For example, Operations of type Connect and Disconnect
reference UUT ports defined in the Interface section.

Although the ATML Test Description standard is based on
the legacy military TRD standards, it also contains the
following significant enhancements:

 Standardized test operations, such as Setup, Measure,
Compare, and so on. These types of operations were
described as free-form text in the legacy standards.

 Support for describing signals and test behavior using the
IEEE Std 1641 Signal & Test Definition standard.

 Test Groups to describe reusable test behavior.

 Multiple types of test sequencing, such as fault tree,
serial, and parallel.

 Features that facilitate the accurate exchange of data,
such as strongly typed data and support for the
specification of standard units.

The following XML snippet is an example implementation
of the behavior of the test described by the TRD form in Fig. 1.
For brevity, this example does not cover the sequencing of tests
or the use of standardized test operations for Connect,
Measure, and Disconnect. Readers can download complete
XML examples from the IEEE-SA Supplemental Material web
site [3].

<Action xsi:type="Test" ID="816276" name="T5100">

 <Description>Measure Voltage between lines 1 and 3 of UUT

 LAN port</Description>

 <Behavior>

 <Description>Measure DC Voltage between pins J1-1 and J1-3 into

 VoltageValue</Description>

 </Behavior>

 <TestResults>

 <TestResult ID="615736" name="VoltageValue">

 <ValueDescription>

 <DatumDescription xsi:type="doubleDescription" standardUnit="V" />

 </ValueDescription>

 <TestLimits>

 <Limit>

 <c:LimitPair operator="AND">

 <c:Limit comparator="GE">

 <c:Datum xsi:type="c:double" standardUnit="V" value="45.2"/>

 </c:Limit>

 <c:Limit comparator="LE">

 <c:Datum xsi:type="c:double" standardUnit="V" value="57.0"/>

 </c:Limit>

 </c:LimitPair>

 </Limit>

 </TestLimits>

 </TestResult>

 </TestResults>

</Action>

The ATML Test Description standard allows the creation
of integrated software systems in which software products
from different vendors support test requirements input, test
document generation, code generation, and so on.

IV. AUTOMATED CODE GENERATION

The solution introduced in this paper and illustrated in
Fig. 4 uses ATML Test Description to store test requirements
data and replaces the manual conversion of requirements into
code by automatic code generation.

Fig. 4 – Automated Code Generation

A typical test development flow contains the following
steps:

1. Product engineers create ATML Test Description
documents using ATML Pad, a visual editor for ATML
documents [4]. Data are validated to ensure conformance
with the applicable IEEE standards and saved directly in
the standard ATML Test Description format.

2. If paper-oriented TRDs are required, they can be
generated automatically from the ATML Test
Description document using a custom plug-in of ATML
Pad.

3. The TD Translator (part of the NI TestStand ATML
Toolkit) [5] is invoked to perform the automatic code
generation, creating a partial TestStand test program that
consists of a sequence file and shell source code for
LabWindows™/CVI or LabVIEW code modules.

4. Test engineers complete the test program by adding code
for instrument control, switching, data processing,
operator interface operations, and so on.

When test requirements change, ATML Pad is used to
make changes to the ATML document, and then an automatic
update function of the TD Translator is invoked to make the
corresponding code changes. In most cases, the test program
can be changed without altering the code that was added
manually since the original translation.

Fig. 5 shows the NI TestStand sequence file and the
LabWindows™/CVI shell code that resulted from converting
the ATML Test Description file representing the TRD form
from Fig 1. To start the conversion, a user simply opens the
TEST DESCRIPTION file in NI TestStand and the sequence
file and appropriate shell code is automatically created.

Fig. 5 – Test Sequence Conversion to NI TestStand Sequence

V. AUTOMATED REQUIREMENTS CONVERSION

The use case referenced in the previous section applies to
newly developed test requirements. In many cases, military and
commercial organizations already own test requirements, test
specifications, or test plans in an electronic document format,
such as Microsoft Word, Microsoft Excel, or plain text files.
To prevent losing the existing investment, organizations can
import existing documents directly into ATML Pad using an
extensibility feature called custom plug-ins, as illustrated in
Fig. 6.

Fig. 6 – Automated Requirements Conversion

A typical test development flow contains the following
steps:

1. Product engineers create TRDs, test specifications, or test
plans using a general-purpose document editor. Data are
saved in an electronic document format supported by the
editor.

2. A specialized plug-in of ATML Pad is invoked to convert
the digital document into an ATML Test Description
document

3. If necessary, test engineers can edit the generated ATML
Test Description document using ATML Pad. For
example, free-form descriptions of test behavior can be
transformed into standard Operations.

4. The TD Translator performs the automatic code
generation.

5. Test engineers complete the test program, as described in
the previous section.

VI. ATML PAD

The ATML formats offer powerful modeling capabilities
but are often quite complex. Consequently, the use of general-
purpose XML editors becomes cumbersome as document size
grows. ATML Pad manages the complexity of the ATML
format and allows users to focus on describing the test items.
ATML Pad includes the following important productivity
features:

 Offers an application-specific visual interface that mirrors
the structure of the ATML schema. Fig. 7 shows the
ATML Pad user interface with the test represented in the
TRD form in Fig. 1.

Fig. 7 – User Interface of ATML Pad

 Supports efficient data input. For example, users can
quickly generate complex ATML constructs through a
single mouse click.

 Abstracts XML ID references, allowing users to select
the referenced item from a list.

 Generates XML IDs automatically and ensures that IDs
remain unique while users edit the data.

 Performs comprehensive data validation at different
stages of the editing process, such as online validation of
user input, on-demand validation of non-schema enforced
constraints, and validation against the XML schemas
before saving data to file.

VII. CONCLUSIONS

The solution described in this paper reduces the cost of

implementing test programs by:

 Reducing the need for manual coding for test

program completion.

 Eliminating the errors that can occur during

manual input of test program data.

 Using COTS software products and also allowing

extension and customization.

The solution ensures cost-effective, long-term maintainability

of test programs by:

 Storing test requirements in an industry-standard

format.

 Allowing future changes to requirements while

automatically preserving the consistency between

requirements and implementation.

 Facilitating test results traceability by

automatically maintaining references to the

original test specifications.

REFERENCES

[1] ATMLFramework, http://grouper.ieee.org/groups/scc20/tii/atml-
family.htm, downloaded 8 July 2013

[2] Neag, I. A., Seavey, M., “Applications of IEEE P1671.1 ATML
Test Description”, Proc. Autotestcon 2007, pp 197 – 204,
Baltimore, MD

[3] IEEE-SA Supplemental Material, web page for IEEE Std
1671.1, http://standards.ieee.org/downloads/1671/1671.1-2009/,
downloaded 8 July 2013

[4] ATML Pad, http://www.atmlpad.com, downloaded 8 July 2013

[5] Jain, A., Delgado, S., “Automatic ATML test description
translation to a COTS test executive”, Proc. Autotestcon 2009,
pp 190 - 194, Anaheim, CA

